Description
This new edition is
intended for the undergraduate one or two semester course in modern algebra,
also called abstract algebra. It follows a logical path,
using the axioms or rules to understand structures such as groups, rings, and
fields, and giving the reader examples to help, but leaving many theorems and
examples for them to try. The unique feature of the text is the list of
“projects” at the end of each chapter that can be used in the classroom (with
students solving them), alone, or in groups with the aid of an instructor.
Because of their interactive nature, the projects are designed to
reinforce previous concepts.
Features:
- A logic-based presentation, with the structures of groups, rings, and fields
presented in similar ways through objects, sub-objects, mappings between
objects, and quotients of objects - Follows a fairly
straight path without many of the side areas, such as modules, in order to
introduce Galois Theory and solvability of polynomials - Provides numerous
examples, exercises, and the inclusion of “projects” in each chapter - Adds more, varied examples to
use when illustrating ideas such as order of elements, direct products, and
subgroups - Includes new material on the
history of mathematics with vignettes of mathematicians - Provides instructor’s resources with solutions
and PowerPoint slides for use as a textbook