Less than a decade ago, lead halide perovskite semiconductors caused a sensation: Solar cells exhibiting astonishingly high levels of efficiency. Recently, it became possible to synthesize nanocrystals of this material as well. Interestingly; simply by controlling the size and shape of these crystals, new aspects of this material literally came to light. These nanocrystals have proven to be interesting candidates for light emission.  In this thesis, the recombination, dephasing and diffusion of excitons in perovskite nanocrystals is investigated using time-resolved spectroscopy. All these dynamic processes have a direct impact on the light-emitting device performance from a technology point of view. However, most importantly, the insights gained from the measurements allowed the author to modify the nanocrystals such that they emitted with an unprecedented quantum yield in the blue spectral range, resulting in the successful implementation of this material as theactive layer in an LED. This represents a technological breakthrough, because efficient perovskite light emitters in this wavelength range did not exist before.
“Essentials of Oral Histology and Embryology 6th Edition” has been added to your cart. View cart
Exciton Dynamics in Lead Halide Perovskite Nanocrystals Recombination, Dephasing and Diffusion
Author(s): Bernhard Johann Bohn
Publisher: Springer
ISBN: 9783030709396
Edition:
$39,99
Delivery: This can be downloaded Immediately after purchasing.
Version: Only PDF Version.
Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)
Quality: High Quality. No missing contents. Printable
Recommended Software: Check here