Operators and Representation Theory: Canonical Models for Algebras of Operators Arising in Quantum Mechanics

Author(s): Jorgensen, P.E.T.
Publisher: North Holland
ISBN: 9780444703217
Edition:

$39,99

Delivery: This can be downloaded Immediately after purchasing.
Version: Only PDF Version.
Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)
Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Important: No Access Code

Description

Description

Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.

This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly elegant manner by the use of Lie algebras, extensions, and projective representations. In several cases, this Lie algebraic approach to questions in mathematical physics and C*-algebra theory is new; for example, the Lie algebraic treatment of the spectral theory of curved magnetic field Hamiltonians, the treatment of irrational rotation type algebras, and the Virasoro algebra.

Also examined are C*-algebraic methods used (in non-traditional ways) in the study of representations of infinite-dimensional Lie algebras and their extensions, and the methods developed by A. Connes and M.A. Rieffel for the study of the Yang-Mills problem.

Cutting across traditional separations between fields of specialization, the book addresses a broad audience of graduate students and researchers.