Topics in Infinite Group Theory Nielsen Methods, Covering Spaces, and Hyperbolic Groups 2nd Edition

Author(s): Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger; Annika Schürenberg; Leonard Wienke
Publisher: De Gruyter
ISBN: 9783111339566
Edition: 2nd Edition

$39,99

Delivery: This can be downloaded Immediately after purchasing.
Version: Only PDF Version.
Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)
Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Important: No Access Code

Description

Description

This book gives an advanced overview of several topics in infinite group theory. It can also be considered as a rigorous introduction to combinatorial and geometric group theory. The philosophy of the book is to describe the interaction between these two important parts of infinite group theory. In this line of thought, several theorems are proved multiple times with different methods either purely combinatorial or purely geometric while others are shown by a combination of arguments from both perspectives. The first part of the book deals with Nielsen methods and introduces the reader to results and examples that are helpful to understand the following parts. The second part focuses on covering spaces and fundamental groups, including covering space proofs of group theoretic results. The third part deals with the theory of hyperbolic groups. The subjects are illustrated and described by prominent examples and an outlook on solved and unsolved problems. New edition now includes the topics on universal free groups, quasiconvex subgroups and hyperbolic groups, and also Stallings foldings and subgroups of free groups. New results on groups of F-types are added.