Semidefinite Programming in Quantum Information Science

Author(s): Paul Skrzypczyk; Daniel Cavalcanti
Publisher: Institute of Physics Publishing
ISBN: 9780750333412
Edition:

$39,99

Delivery: This can be downloaded Immediately after purchasing.
Version: Only PDF Version.
Compatible Devices: Can be read on any device (Kindle, NOOK, Android/IOS devices, Windows, MAC)
Quality: High Quality. No missing contents. Printable

Recommended Software: Check here

Important: No Access Code

Description

Description

Semidefinite programs (SDPs) are a class of optimisation problems that find application in numerous areas of physics, engineering and mathematics. Semidefinite programming is particularly suited to problems in quantum physics and quantum information science. Following a review of the theory of semidefinite programming, the book proceeds to describe how it can be used to address a wide range of important problems from across quantum information science. Specific applications include quantum state, measurement, and channel estimation and discrimination, entanglement detection and quantification, quantum distance measures, and measurement incompatibility. Though SDPs have become an increasingly important tool in quantum information science it’s not yet the kind of mathematics students learn routinely. Assuming only a basic knowledge of linear algebra and quantum physics and quantum information, this graduate-level book provides a unified and accessible presentation of one of the key numerical methods used in quantum information science. Whilst the focus is on the theoretical machinery of SDPs, the authors have provided an accompanying GitHub repository containing example code, covering some of the SDPs studied in this book. Key features Accessible for graduate students in science and mathematics A unified and accessible presentation of one of the key numerical methods used in quantum information science Written by leading researchers on the topic Accompanying GitHub repository with sample code